资料图:韩国首尔明洞街头。图片来源:视觉中国
杜鹏:贝斯图教授在新近的学术论文中认为,如果人力资本得到快速增长,低生育率可能不会对中国未来几十年的持续发展构成大的障碍。能否概述得出这一结论的过程?
贝斯图:这是基于沃尔夫冈·卢茨提出的“人口新陈代谢”概念得出,即一个人口老龄化社会,如果受教育程度相对更高,人们的技能水平相对更高,且人力资本的改善可以转化为生产力提高,这种人力资本的转变就可抵消人口结构变化带来的影响。中国需要适应新的人口结构现实,释放社会中人口的全部潜力,而不仅仅是创造和要求更多的人口资源。
让年轻人生孩子,什么才是他们最想要的?
杜鹏:应对低生育率,世界不少国家的经验大致分三个方面:从产假、育儿假等方面给予时间支持,从津贴、减税等方面给予经济支持,从托育照护等方面给予服务支持。从大家的经验观察,年轻人想要的是什么?
林玲子:日本人尤其是男性,通常工作时间很长,所以日本一直以来都尝试着对工作风格、工作方式进行改革。但是最大的影响是新冠疫情带来的,居家办公的人一下子多了起来,尤其是2021年,结婚率上升了。如果远程办公、弹性办公方式继续下去,可能会给年轻人创造比较好的条件。除此之外,产假和陪产假,还有诸如津贴等经济支持也很重要。
金益基:韩国政府效仿北欧国家的“工作—家庭平衡”政策,但是韩国政府没有做到为工作女性提供充足的福利,甚至对男性来说也没有一个切实有效的环境(提高生育率)。提高生育水平,弹性工作和陪产假都是必不可少的,这也是韩国年轻人最想要的。
贝斯图:工作单位政策必须要和国家政策同步,提供更好的工作环境,同时也要在家庭内部平衡男女角色,男女双方都应在照顾孩子和家务中作出同等贡献。
少子化和低生育率本身,与其说是一个生育问题,不如说是社会其他问题的表征。比如年轻人要照顾孩子、父母、伴侣的父母,压力太大,政府确实想支持生育,但要想达到目标,可能要先在老年护理领域投入资金,去分担劳动年龄人口肩上的担子。
资料图:一些孩子在家人的带领下走进农田参与劳动。中新社发 王俞 摄 图片来源:CNSphoto应从“人口红利”转向“人才红利”
杜鹏:老年人群并非社会的负担,而是巨大的社会资源。在开发“银发资源”方面,日韩的经验能给中国带来哪些启示?
林玲子:不能认为老年人寿命的延长会带来社会负担。日本人口确实是在减少,但预期寿命每年都在延长,这就意味着,增加的老龄人口放缓了整体人口减少的趋势。传统意义上的劳动人口确实在减少,但是如果考虑到健康的老人数量在增加,那么实际劳动人口并未大幅减少,我们要做的是促进就业,促进老年人就业。
金益基:韩国正制定各种计划为老年人创造就业机会,制定了各种扶持计划。我们成立了韩国老年人力开发院,全面统筹相关工作,该机构正致力于为老年人提供适当的就业机会和参与社会活动的机会。
杜鹏:贝斯图教授近期在文章中写到,中国要适应人口格局的巨大变化,逐步从依靠“人口红利”转向收获“人才红利”。西欧国家在这方面有哪些经验和教训可供中国借鉴?
贝斯图:每当讨论老龄化带来的负担时,我们必须准确地定义“负担”所代表的实际含义。我之所以谈到这种人力资本红利,是因为如今的年轻人与50、60、70年前的年轻人有很大不同。他们所掌握的技能、面临的机遇,如果被转化为更高的生产力,实际上就可以产生这种红利。我们应该考虑如何改进劳动力市场的整体结构,而不是把老年人或60岁以上的人群割裂出来看待。
资料图:辽宁沈阳一公园内,一群爱好冰球运动的退休大爷组建冰球队进行比赛。如何让人们接受“延迟退休”?
杜鹏:当前,“延迟退休”是中国社会热度较高的话题,其他一些国家也同样面临这一问题,如何在全社会达成延迟退休的共识?又如何做好配套制度安排?
贝斯图:在英国,退休和养老金之间的联系已不那么紧密,没有所谓的退休年龄。你的公司不能强迫你在60岁或65岁,或其他任何年龄离职,除非有一些非常具体的正当理由。这与养老金年龄不同,领取养老金的年龄仍然是固定的。所以,你可以选择退休,选择离职,但你无法在特定年龄之前领取养老金。这可以防止人们在他们真正想离职前就被迫失去工作。
人们说这会剥夺年轻人的工作,让人工作到六七十岁会增加年轻人口的失业率,但我认为这种说法缺乏证据,我们应该考虑人们在不同的年龄阶段如何承担不同的工作。
林玲子:我们必须区分退休年龄和领取养老金年龄。日本正将养老金领取年龄从60岁提高到65岁,但我们决定不再往后延迟,因为保持养老金体系可持续性很重要,这样人们才会信任它。目前,我们可以选择从70或75岁开始领取养老金,如果延迟领取,获得的养老金会更多。
至于退休年龄,必须让它变得灵活,这样未来工作市场才能更灵活。我们可以为人生设立一个“第一工作阶段”,从20多岁到50岁,这个阶段,我们会结婚生子。到了50岁,孩子长大成人,就可以开启“第二工作阶段”,从50岁开始积累新的经验。我们可以工作到60岁或70岁以后,甚至80岁或100岁。这种退休年龄的设定是创造新型社会或适老社会的关键。(完)
科学家成功合成铹的第14个同位素****** 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。 近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。 此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。 不断进行探索,再次合成铹同位素 铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。 质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。 103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。 截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。 目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。 通过熔合反应,形成新的原子核 铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。 “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。 在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。 “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 拓展新的领域,推动超重核理论研究 由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。 此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。 研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。 “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |